변수의 최소값에 해당하는 행을 그룹별로 추출
(1) 하나의 변수로 데이터를 그룹화하고 ( State
), (2) 각 그룹 내에서 다른 변수의 최소값 행을 찾고 ( Employees
), (3) 전체 행을 추출하고 싶습니다.
(1)과 (2)는 쉬운 한 줄이고, (3)도 그래야한다고 생각하지만, 그것을 얻을 수 없습니다.
다음은 샘플 데이터 세트입니다.
> data
State Company Employees
1 AK A 82
2 AK B 104
3 AK C 37
4 AK D 24
5 RI E 19
6 RI F 118
7 RI G 88
8 RI H 42
data <- structure(list(State = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L), .Label = c("AK", "RI"), class = "factor"), Company = structure(1:8, .Label = c("A",
"B", "C", "D", "E", "F", "G", "H"), class = "factor"), Employees = c(82L,
104L, 37L, 24L, 19L, 118L, 88L, 42L)), .Names = c("State", "Company",
"Employees"), class = "data.frame", row.names = c(NA, -8L))
다음을 min
사용하여 그룹 별 계산 이 쉽습니다 aggregate
.
> aggregate(Employees ~ State, data, function(x) min(x))
State Employees
1 AK 24
2 RI 19
... 또는 data.table
:
> library(data.table)
> DT <- data.table(data)
> DT[ , list(Employees = min(Employees)), by = State]
State Employees
1: AK 24
2: RI 19
그러나 이러한 min
값에 해당하는 전체 행을 추출하려면 어떻게해야 Company
합니까? 즉 , 결과 에도 포함 합니까?
약간 더 우아함 :
library(data.table)
DT[ , .SD[which.min(Employees)], by = State]
State Company Employees
1: AK D 24
2: RI E 19
을 사용하는 것보다 덜 우아 .SD
하지만 조금 더 빠릅니다 (그룹이 많은 데이터의 경우).
DT[DT[ , .I[which.min(Employees)], by = State]$V1]
또한 데이터 세트에 동일한 최소값이 여러 개 있고 모두 하위 집합을 사용하려는 경우 표현식 which.min(Employees)
을 Employees == min(Employees)
로 바꾸면됩니다.
data.table이있는 그룹 별 부분 집합 도 참조하십시오 .
dplyr
솔루션 :
library(dplyr)
data %>%
group_by(State) %>%
slice(which.min(Employees))
이것이 Google의 최고 히트작이므로 알아두면 유용한 몇 가지 추가 옵션을 추가 할 것이라고 생각했습니다. 아이디어는 기본적으로 한 번 정렬 한 Employees
다음State
사용 중 data.table
library(data.table)
unique(setDT(data)[order(Employees)], by = "State")
# State Company Employees
# 1: RI E 19
# 2: AK D 24
또는 먼저 주문한 다음 하위 집합을 지정할 수도 .SD
있습니다. 두 작업 모두 재전송 된 data.table 버전에서 최적화되었으며 order
겉보기에는 triggers data.table:::forderv
이지만 .SD[1L]
triggersGforce
setDT(data)[order(Employees), .SD[1L], by = State, verbose = TRUE] # <- Added verbose
# order optimisation is on, i changed from 'order(...)' to 'forder(DT, ...)'.
# i clause present and columns used in by detected, only these subset: State
# Finding groups using forderv ... 0 sec
# Finding group sizes from the positions (can be avoided to save RAM) ... 0 sec
# Getting back original order ... 0 sec
# lapply optimization changed j from '.SD[1L]' to 'list(Company[1L], Employees[1L])'
# GForce optimized j to 'list(`g[`(Company, 1L), `g[`(Employees, 1L))'
# Making each group and running j (GForce TRUE) ... 0 secs
# State Company Employees
# 1: RI E 19
# 2: AK D 24
또는 dplyr
library(dplyr)
data %>%
arrange(Employees) %>%
distinct(State, .keep_all = TRUE)
# State Company Employees
# 1 RI E 19
# 2 AK D 24
Another interesting idea borrowed from @Khashaas awesome answer (with a small modification in form of mult = "first"
in order to handle multiple matches) is to first find minimum per group and then perform a binary join back. The advantage of this is both the utilization of data.tables gmin
function (which skips the evaluation overhead) and the binary join feature
tmp <- setDT(data)[, .(Employees = min(Employees)), by = State]
data[tmp, on = .(State, Employees), mult = "first"]
# State Company Employees
# 1: AK D 24
# 2: RI E 19
Some benchmarks
library(data.table)
library(dplyr)
library(plyr)
library(stringi)
library(microbenchmark)
set.seed(123)
N <- 1e6
data <- data.frame(State = stri_rand_strings(N, 2, '[A-Z]'),
Employees = sample(N*10, N, replace = TRUE))
DT <- copy(data)
setDT(DT)
DT2 <- copy(DT)
str(DT)
str(DT2)
microbenchmark("(data.table) .SD[which.min]: " = DT[ , .SD[which.min(Employees)], by = State],
"(data.table) .I[which.min]: " = DT[DT[ , .I[which.min(Employees)], by = State]$V1],
"(data.table) order/unique: " = unique(DT[order(Employees)], by = "State"),
"(data.table) order/.SD[1L]: " = DT[order(Employees), .SD[1L], by = State],
"(data.table) self join (on):" = {
tmp <- DT[, .(Employees = min(Employees)), by = State]
DT[tmp, on = .(State, Employees), mult = "first"]},
"(data.table) self join (setkey):" = {
tmp <- DT2[, .(Employees = min(Employees)), by = State]
setkey(tmp, State, Employees)
setkey(DT2, State, Employees)
DT2[tmp, mult = "first"]},
"(dplyr) slice(which.min): " = data %>% group_by(State) %>% slice(which.min(Employees)),
"(dplyr) arrange/distinct: " = data %>% arrange(Employees) %>% distinct(State, .keep_all = TRUE),
"(dplyr) arrange/group_by/slice: " = data %>% arrange(Employees) %>% group_by(State) %>% slice(1),
"(plyr) ddply/which.min: " = ddply(data, .(State), function(x) x[which.min(x$Employees),]),
"(base) by: " = do.call(rbind, by(data, data$State, function(x) x[which.min(x$Employees), ])))
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# (data.table) .SD[which.min]: 119.66086 125.49202 145.57369 129.61172 152.02872 267.5713 100 d
# (data.table) .I[which.min]: 12.84948 13.66673 19.51432 13.97584 15.17900 109.5438 100 a
# (data.table) order/unique: 52.91915 54.63989 64.39212 59.15254 61.71133 177.1248 100 b
# (data.table) order/.SD[1L]: 51.41872 53.22794 58.17123 55.00228 59.00966 145.0341 100 b
# (data.table) self join (on): 44.37256 45.67364 50.32378 46.24578 50.69411 137.4724 100 b
# (data.table) self join (setkey): 14.30543 15.28924 18.63739 15.58667 16.01017 106.0069 100 a
# (dplyr) slice(which.min): 82.60453 83.64146 94.06307 84.82078 90.09772 186.0848 100 c
# (dplyr) arrange/distinct: 344.81603 360.09167 385.52661 379.55676 395.29463 491.3893 100 e
# (dplyr) arrange/group_by/slice: 367.95924 383.52719 414.99081 397.93646 425.92478 557.9553 100 f
# (plyr) ddply/which.min: 506.55354 530.22569 568.99493 552.65068 601.04582 727.9248 100 g
# (base) by: 1220.38286 1291.70601 1340.56985 1344.86291 1382.38067 1512.5377 100 h
The base function by
is often useful for working with block data in data.frames. For example
by(data, data$State, function(x) x[which.min(x$Employees), ] )
It does return the data in a list, but you can collapse that with
do.call(rbind, by(data, data$State, function(x) x[which.min(x$Employees), ] ))
Corrected plyr
solution:
ddply(df, .(State), function(x) x[which.min(x$Employees),])
# State Company Employees
# 1 AK D 24
# 2 RI E 19
ReferenceURL : https://stackoverflow.com/questions/24070714/extract-row-corresponding-to-minimum-value-of-a-variable-by-group
'Programing' 카테고리의 다른 글
SQL 쿼리에서 그룹화 된 COUNT의 SUM (0) | 2020.12.15 |
---|---|
Python matplotlib 다중 막대 (0) | 2020.12.15 |
UIAlertView / UIAlertController iOS 7 및 iOS 8 호환성 (0) | 2020.12.15 |
패닉이 발생했는지 확인하는 Rust 단위 테스트를 어떻게 작성합니까? (0) | 2020.12.15 |
Objective-C에서 상속과 범주의 차이점은 무엇입니까? (0) | 2020.12.15 |